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Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
● I = kA + kD(N•L) + kS(E•R)

n

where…
● kA is the ambient lighting coefficient of the object or scene
● kD(N•L) is the diffuse component of surface illumination (‘matte’)
● kS(E•R)

n is the specular component of surface illumination (‘shiny’)
where R = L - 2(L•N)N

We compute color by vertex or by polygon fragment:
● Color at the vertex: Gouraud shading
● Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so 
code is clean whether we’re interpolating colors or normals.
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Shading with shaders

For each vertex our Java code will need to provide:
● Vertex position
● Vertex normal
● [Optional] Vertex color, kA / kD / kS, reflectance, 

transparency…
We also need global state:
● Camera position and orientation, represented as a 

transform
● Object position and orientation, to modify the vertex 

positions above
● A list of light positions, ideally in world coordinates
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Shader sample –
Gouraud shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

in vec4 v;
in vec3 n;

out vec4 color;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
  vec3 p = (modelToWorld * v).xyz;
  vec3 n = normalize(normalToWorld * n);
  vec3 l = normalize(lightPosition - p);
  float ambient = 0.2;
  float diffuse = 0.8 * clamp(0, dot(n, l), 1);

  color = vec4(purple 
      * (ambient + diffuse), 1.0);
  gl_Position = modelToScreen * v;
}

#version 330

in vec4 color;

out vec4 fragmentColor;

void main() {
  fragmentColor = color;
}

Diffuse lighting
  d = kD(N•L)

expressed as a shader
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Shader sample –
Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vec4 v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {
  normal = normalize(
      normalToWorld * n);
  position = 
      (modelToWorld * v).xyz;
  gl_Position = 
      modelToScreen * v;
}

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position;
in vec3 normal;

out vec4 fragmentColor;

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
  vec3 n = normalize(normal);
  vec3 l = normalize(lightPosition - position);
  vec3 e = normalize(position - eyePosition);
  vec3 r = reflect(l, n);

  float ambient = 0.2;
  float diffuse = 0.4 * clamp(0, dot(n, l), 1);
  float specular = 0.4 * 
      pow(clamp(0, dot(e, r), 1), 2);

  fragmentColor = vec4(purple * 
      (ambient + diffuse + specular), 1.0);
}

a = kA
d = kD(N•L)
s = kS(E•R)n

GLSL includes handy helper methods for 
illumination such as reflect()--perfect for 
specular highlights.
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Shader sample – Gooch shading

Image source: “A 
Non-Photorealistic 
Lighting Model For 
Automatic Technical 
Illustration”, Gooch, 
Gooch, Shirley and 
Cohen (1998).  
Compare the Gooch 
shader, above, to the 
Phong shader (right).

Gooch shading is an example of non-realistic 
rendering.  It was designed by Amy and Bruce 
Gooch to replace photorealistic lighting with a 
lighting model that highlights structural and 
contextual data.
● They use the  term of the conventional lighting 

equation to choose a map between ‘cool’ and 
‘warm’ colors.

● This is in contrast to conventional illumination 
where  lighting simply scales the underlying 
surface color.

● Combined with edge-highlighting through a 
second renderer pass, this creates 3D models 
which look like engineering schematics.
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Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd. 

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3  ReflectVec;
out vec3  ViewVec;

void main()
{
  vec3 ecPos      = vec3(modelToCamera * vPosition);
  vec3 tnorm      = normalize(normalToCamera * vNormal);
  vec3 lightVec   = normalize(LightPosition - ecPos);
  ReflectVec      = normalize(reflect(-lightVec, tnorm));
  ViewVec         = normalize(-ecPos);
  NdotL           = (dot(lightVec, tnorm) + 1.0) * 0.5;
  gl_Position     = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd. 

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3  ReflectVec;
in vec3  ViewVec;

out vec4 result;

void main()
{
  vec3 kcool  = min(Cool + DiffuseCool * vColor, 1.0);
  vec3 kwarm  = min(Warm + DiffuseWarm * vColor, 1.0); 
  vec3 kfinal = mix(kcool, kwarm, NdotL);

  vec3 nRefl  = normalize(ReflectVec);
  vec3 nview  = normalize(ViewVec);
  float spec  = pow(max(dot(nRefl, nview), 0.0), 32.0);

  if (gl_FrontFacing) {
    result = vec4(min(kfinal + spec, 1.0), 1.0);
  } else {
    result = vec4(0, 0, 0, 1);
  }
}
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Shader sample – Gooch shading
In the vertex shader source, notice the use of the built-in ability to 
distinguish front faces from back faces:

if (gl_FrontFacing) {...
This supports distinguishing front faces (which should be shaded 

smoothly) from the edges of back faces (which will be drawn in heavy 
black.)
In the fragment shader source, this is used to choose the weighted  color 
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation 
between kcool and kwarm.  The weighting factor is NdotL, the  
lighting value.
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Shader sample – Gooch shading
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Texture mapping

Real-life objects rarely consist of perfectly smooth, 
uniformly colored surfaces.

Texture mapping is the art of applying an image to a 
surface, like a decal.  Coordinates on the surface are 
mapped to coordinates in the texture.

10



Procedural texture
Instead of relying on discrete 

pixels, you can get infinitely 
more precise results with 
procedurally generated textures. 

Procedural textures compute the 
color directly from the U,V 
coordinate without an image 
lookup.

For example, here’s the code for 
the torus’ brick pattern (right):

  tx = (int) 10 * u

  ty = (int) 10 * v
  oddity = (tx & 0x01) == (ty & 0x01)
  edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
  return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u 
coordinate by 4 to repeat the brick texture 
four times around the torus.
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Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the renderer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a 
dent on the surface.

If we duplicate the normals, we don’t 
have to duplicate the dent.
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Non-color textures: normal mapping
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// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
  bool isOutsideFace = 
      (length(position - CENTER) > 1);
  vec3 color = isOutsideFace ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);
}

Procedural texturing in the 
fragment shader
// ...
const vec3 CENTER = vec3(0, 0, 1);
// ...

void main() {
  bool isOutsideFace = 
      (length(position - CENTER) > 1);
  bool isMouth = 
      (length(position - CENTER) < 0.75)
      && (position.y <= -0.1);

  vec3 color = (isMouth || isOutsideFace)
      ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);
}

(Code truncated for brevity--again, check out 
the source on github for how I did the curved 
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
  bool isOutsideFace = (length(position - CENTER) > 
1);
  bool isEye = (length(position - LEFT_EYE) < 0.1)
      || (length(position - RIGHT_EYE) < 0.1);
  bool isMouth = (length(position - CENTER) < 0.75)
      && (position.y <= -0.1);

  vec3 color = (isMouth || isEye || isOutsideFace)
      ? BLACK : YELLOW;
  fragmentColor = vec4(color, 1.0);
}
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Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic 

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the 

shader
● ...much, much more!
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Antialiasing with OpenGL

Antialiasing remains a challenge with 
hardware-rendered graphics, but image quality 
can be significantly improved through GPU 
hardware.
● The simplest form of hardware 

anti-aliasing is Multi-Sample 
Anti-Aliasing (MSAA).

● “Render everything at higher resolution, 
then down-sample the image to blur 
jaggies”

● Enable MSAA in OpenGL with 
glfwWindowHint(GLFW_SAMPLES, 4);
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Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs 
4x supersampled (right) 
polygon edge, using 
OpenGL’s built-in 
supersampling support.  
Images magnified 4x.
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Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be 
very limiting in high-resolution scenarios (high demand 
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based 
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur 
the lines’ width

3. Composite the filtered lines into the framebuffer 
using alpha blending

This approach is great for polygonal models, tougher for 
effects-heavy visual scenes like video games
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Antialiasing on 
the GPU

More recently, NVIDIA’s Fast 
Approximate Anti-Aliasing 
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those 

subject to aliasing.  
2. Map these to horizontal (gold) or vertical (blue) edges. 
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge 

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel 

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from 
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 19

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf


Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is 

dynamically refined based on the rate at which the function defining 
the edge is changing with respect to the surrounding pixels on the 
screen.

This is supported in GLSL by the methods dFdx(F) and 
dFdy(F).  
● These methods return the derivative with respect to X and Y, in screen 

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing 

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the 
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost, 
Addison Wesley, 2006.  Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 20



Antialiasing texture reads with Signed 
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately 
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map 
instead of as pixels.  This allows per-pixel smoothing at multiple distances.
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3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed 
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest 

black pixel (if white) or white pixel (if 
black).  Distance from white is negative.

Conventional antialiasing Signed distance field 22



Antialiasing texture reads with Signed 
Distance Fields

Conventional bilinear filtering 
computes a weighted average of 
color, but an SDF computes a 
weighted average of distances.

This means that a small step away 
from the original values we find 
smoother, straighter lines where 
the slope of the isocline is 
perpendicular to the slope of the 
source data.

By smoothing the isocline of the 
distance threshold, we achieve 
smoother edges and nifty edge 
effects.

low = 0.02;    high = 0.035;

double dist =
bilinearSample(tex coords);

double t = 
(dist - low) / (high - low);

return (dist < low) ? BLACK

  : (dist > high) ? WHITE

  : BLACK*(1 - t) + WHITE*(t);

Adding a 
second 
isocline 
enables 
colored 
borders. 23



Tessellation shaders

One use of tessellation is in rendering 
geometry such as game models or terrain 
with view-dependent Levels of Detail 
(“LOD”).
Another is to do with geometry what 

ray-tracing did with bump-mapping: 
high-precision realtime geometric 
deformation.

Tesselation is a new shader type 
introduced in OpenGL 4.x. Tesselation 
shaders generate new vertices within 
patches, transforming a small number of 
vertices describing triangles or quads 
into a large number of vertices which 
can be positioned individually.

jabtunes.com’s WebGL tessellation demo
Florian Boesch’s LOD terrain demo

http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/
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Tessellation shaders

How it works:
● You tell OpenGL how many vertices a single 

patch will have:
glPatchParameteri(GL_PATCH_VERTICES, 4);

● You tell OpenGL to render your patches:
glDrawArrays(GL_PATCHES, first, numVerts);

● The Tessellation Control Shader specifies output 
parameters defining how a patch is split up: 
gl_TessLevelOuter[] and 
gl_TessLevelInner[]. 
These control the number of vertices per primitive 
edge and the number of nested inner levels, 
respectively.

Vertex shader

Tessellation Control Shader

Tessellation primitive generator

Tessellation Evaluation Shader

Geometry shader

Fragment shader

...
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Tessellation shaders

The tessellation primitive generator 
generates new vertices along the 
outer edge and inside the patch, as 
specified by 
gl_TessLevelOuter[] and 
gl_TessLevelInner[].

Each field is an array.  Within the 
array, each value sets the number of 
intervals to generate during 
subprimitive generation.

Triangles are indexed similarly, but 
only use the first three Outer and 
the first Inner array field.

gl_TessLevelOuter[3] = 5.0

gl_TessLevelOuter[1] = 3.0

gl_TessLevelInner[1] = 4.0
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Tessellation shaders
The generated vertices are then 
passed to the Tesselation 
Evaluation Shader, which can 
update vertex position, color, 
normal, and all other per-vertex 
data.

Ultimately the complete set of 
new vertices is passed to the 
geometry and fragment 
shaders.

Image credit: Philip Rideout
http://prideout.net/blog/?p=4827

http://prideout.net/blog/?p=48


CPU vs GPU – an object demonstration

“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LKWTzrI 
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Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

Anti-Aliasing:
https://people.csail.mit.edu/ericchan/articles/prefilter/ 
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf 
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf 
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